The Examples Book
Appendices
Corporate Partners DEAF PODS National Data Mine Network Personal Professional Development Programming Languages Projects REEU Registration Seminar TA Training Starter Guides Template Module The Data Mine Workshops The Examples Book Think Summer University Partners

Starter Guides

    • Starter Guides
    • Data Science
      • Data Modeling
        • Introduction
        • General Principles
          • The Meaning of f(x) in Data Science
          • Bias Variance Tradeoff
          • Curse Of Dimensionality
          • Frequentism and Bayesianism
        • Resampling Methods
          • Cross Validation
            • Train, Valid and Test Splits
            • Leave-One-Out CV & k-Fold CV
        • Modeling Process
          • Choosing A Model
            • Introduction
            • Flexibility vs. Interpretability
            • Prediction vs. Inference
            • Classification vs. Regression
            • Parameterization
            • Supervision
          • Step By Step Process
            • Introduction
            • Data Wrangling
            • EDA: Exploratory Data Analysis
            • Thinking About The Output
            • Building Data Pipelines
            • Preprocessing
            • Training/Fitting Your Model
            • Measuring Model Fit
            • Model Deployment
      • Data Analysis Techniques
        • Introduction
        • Natural Language Processing(NLP)
          • NLTK (Natural Language Toolkit)
          • Sentiment Analysis
          • Chatbots
          • Prodigy
            • Deploy and Access
          • Word Embeddings
            • Protein Sequence Embedding
        • GIS
          • GIS Basic Example
          • ArcGIS
          • Basic PostGIS
          • Advanced PostGIS
          • Map Matching
          • Route Optimization
        • Neural Networks/Deep Learning
          • Backpropogation
          • Metrics
          • Tuning Paramaters For Neural Networks
        • Time Series
          • Time Series: Recurrent Neural Networks
        • Computer Vision
        • Clustering
        • Trees
      • Data Visualization
        • Dashboarding Tools
          • PowerBI
          • Tableau
        • With Python
          • Plotly (TDM Seminar 20200)
          • Dashboarding (TDM Seminar 40200)
          • Matplotlib, Plotly (Programming Languages Book)
        • With R
          • ggplot (TDM Seminar 20200)
          • Base graphics, ggplot (Programming Languages Book)
      • Gathering Data
        • Web Scraping
          • Scraping With Python
        • Free Data Sets/Sources
    • Data Engineering
      • Anvil
        • RCAC (Rosen Center for Advanced Computing)
          • ACCESS Setup
            • Purdue User Setup
            • General User Setup
            • Other User Setup
          • GitHub on Anvil
          • Uploading Data
          • Getting Started with Anvil
          • Setting up a Windows VM on Anvil
      • Databases
        • SQL
          • SQLite
      • Containerization and Kubernetes
        • Containers
        • Using Data Mine Containers
          • Container Tag Library
        • Kubernetes
        • Deploy Your First Application
        • PySpark
      • SLURM (Simple Linux Utility for Resource Management)
        • SLURM Jobs on Anvil
    • Programming Languages for Data Professionals
      • Python
        • Introduction (Programming Languages Book)
        • Introduction, pandas, classes, data wrangling (TDM Seminar 10200)
        • Web scraping, plotting (TDM Seminar 20200)
        • Testing, kernels, packages and API’s (TDM Seminar 30100)
      • R
        • Introduction (Programming Languages Book)
        • Introduction, Basics, Apply functions (TDM Seminar 10100)
        • Plotting, tidyverse (TDM Seminar 20200)
      • SQL
        • Introduction (Programming Languages Book)
        • SQL (TDM Seminar 20100)
        • SQLite (TDM Seminar 40100)
      • Perl (good general purpose language to know)
        • Perl (Programming Languages Book)
    • Tools, Standards & More
      • Jupyter
      • Data Ethics
      • The Bookshelf
      • Data Formats
        • HTML
        • JSON
        • XML
      • Matlab
        • Training
      • Git
        • Github Desktop
        • Workflows
        • GitHub on Anvil
      • Unix
        • Shells
        • Files
        • Jupyter Lab Kernels
        • Unix Kernels
        • awk Overview
        • bash Overview
        • Regular Expressions
        • Standard Utilities
          • man
          • pwd
          • ls
          • cd
          • type
          • which
          • touch
          • cp
          • mv
          • mkdir
          • rm
          • rmdir
          • head
          • less
          • tail
          • cat
          • diff
          • df
          • du
          • stat
          • wc
          • find
          • cut
          • sort
          • uniq
          • tr
          • sed
          • grep
          • awk
          • chmod
          • chown
          • rsync
          • ssh
          • scp
        • Text Editors
          • vim
          • emacs
          • nano
          • Sublime Text
          • VSCode
        • Other Topics
          • ~ & . & ..
          • Piping
          • Redirection
          • Environment Variables
          • Scripts
          • Permissions
          • Cron
          • systemd
          • Setting Up VMs
    • Anvil
      • What is RCAC?
      • ACCESS Setup
        • Purdue User Setup
        • General User Setup
        • Other User Setup
        • ACCESS Email Update
      • GitHub on Anvil
      • Uploading Data
      • Getting Started with Anvil
      • Setting up a Windows VM on Anvil
  • Corporate Partners
    • stable
  • DEAF PODS
    • stable
  • National Data Mine Network
    • stable
  • Personal
    • stable
  • Professional Development
    • stable
  • Programming Languages
    • stable
  • Projects
    • stable
  • REEU
    • stable
  • Registration
    • stable
  • Seminar TA Training
    • stable
  • Starter Guides
    • stable
  • Template Module
    • stable
  • The Data Mine Workshops
    • stable
  • The Examples Book
    • stable
  • Think Summer
    • stable
  • University Partners
    • stable
Starter Guides stable
  • Starter Guides
  • Data Science
  • Data Analysis Techniques
  • Neural Networks/Deep Learning
  • Metrics
Edit this Page

This page is under construction

Backpropogation Tuning Paramaters For Neural Networks

Purdue University, The Data Mine, Hillenbrand Hall, 1301 Third Street, West Lafayette, IN 47906-4206, (765) 494-0325

© 2020 Purdue University | An equal access/equal opportunity university | Integrity Statement | Copyright Complaints | Maintained by The Data Mine

Contact The Data Mine at datamine@purdue.edu for accessibility issues with this page | Accessibility Resources